
Kira Liquidity Pool Locker
Smart Contract Security Audit
by IronNode from September 2 - September 24, 2024

ironnode.io

1 Executive overview 3

1.1 Introduction 4

1.2 Audit summary 4

Objectives of the audit 5

1.3 Scope 5

1.4 Assessment summary & findings overview 6

2 Application Flow Analysis 7

2.1 User Role 8

Functions 8

2.2 Admin Role 8

Functions 8

2.3 Query Functions 9

4 Findings 10

4.1 Lack of Access Control in execute_unstake 11

Code location 11

Recommendation 11

4.2 Unchecked Mathematical Operations 12

Recommendation 12

Table of contents 1 /16

4.3 Unused native_token Parameter 13

Code location 13

Recommendation 13

Customer Response 13

4.4 Inconsistent Token Handling in get_token_account and
transfer_token_message

14

Code location 14

Recommendation 14

Customer Response 14

4.5 Use of Inline Static Values 15

Code location 15

Recommendation 15

Customer Response 15

4.6 Inefficient ID Format and Storage 16

Code location 16

Recommendation 16

Table of contents 2 /16

3 /16

Executive overview

Executive overview 4 /16

1 Executive overview

1.1 Introduction

The LP Locker is a smart contract platform designed to enhance trust and security in decentralized finance

(DeFi) projects by allowing project owners to lock their Liquidity Pool (LP) tokens. This mechanism serves as a

crucial step for projects aiming to establish themselves as safe and trustworthy within the DeFi ecosystem. 

Key features of the LP Locker include

 Three different timing options for locking LP token

 An option to extend the lock duratio

 Transparency for token holders to view remaining lock duratio

 A 1% tax on LP token locking transactions
 

By locking their LP tokens, project owners can demonstrably commit to not removing liquidity abruptly (often

referred to as "rugging"), thereby fostering trust between the project teams and their token holders. This

transparency allows holders to monitor lock durations and encourage project owners to extend locks when

necessary.
 

In response to a request from the KIRA team, our security team conducted a thorough audit of the LP Locker

contract to ensure its integrity, security, and reliability for both project owners and token holders in the broader

DeFi community.

1.2 Audit summary

Our security audit team was allocated time to conduct an extensive review of the LP Locker contract. The audit

was led by experienced security engineers with expertise in blockchain technology, smart contract security, and

Rust programming.

Executive overview 5 /16

1.2.1 Objectives of the audit

Lock Mechanism Integrity: Evaluate the time-locking feature to confirm it operates as intended and offers

the three timing options securely.

Extension Functionality: Verify the lock extension feature works correctly and can only be triggered by

authorized parties.

Transparency Features: Assess the mechanisms that allow token holders to view remaining lock

durations.

Tax Implementation: Confirm the 1% tax on LP token locking is implemented correctly and securely.

Token Handling Security: Assess the contract's mechanisms for handling both native and CW20 tokens to

ensure they are secure and free from vulnerabilities.

Access Control: Review the access control mechanisms to ensure only authorized parties can perform

sensitive operations.

Mathematical Operations: Examine all mathematical operations for potential overflow, underflow, or other

arithmetic vulnerabilities.

Data Storage Efficiency: Assess the efficiency and security of data storage methods used in the contract.

1.3 Scope

1.3.1 Code repositories

Kira_SC_LP_Locker

Branch: main

Commit Hash: a8b560d4fc37d9226a3fb89e20ab9dfd1915f636

Remediation Commit ID

8f294c482cc43d987d7e3d9777f20805fd289622

Executive overview 6 /16

1.4 Assessment summary & findings overview

Critical High Medium Low Informational

0 2 1 3 0

Security analysis Risk Level Remediation

Lack of Access Control in
execute_unstake

HIGH SOLVED

Unchecked Mathematical Operations HIGH SOLVED

Unused native_token Parameter MEDIUM SOLVED

Inconsistent Token Handling in
get_token_account and
transfer_token_message

LOW SOLVED

Use of Inline Static Values LOW SOLVED

Inefficient ID Format and Storage LOW SOLVED

7 /16

Application Flow Analysis

Application Flow Analysis 8 /16

2 Kira Liquidity Pool Locker
This section of the report provides an in-depth analysis of the application flow for the Kira Liquidity Pool Locker

contract. Theanalysis covers the logical flow of the code, with an emphasis on two primary roles: User and

Admin.

2.1 User Role

The user role encompasses wallet addresses that interact with the LP Locker contract. Users can lock their LP

tokens, extend the lock time, and unstake their tokens after the lock period expires.

2.1.1 Functions

execute_receive_liquidity: Allows users to lock their LP tokens. This function is called when the contract

receives CW20 tokens. It creates a new LiquidityPool entry with the specified lock time. A 1% fee is deducted

from the locked amount.

execute_extend_locktime: Allows users to extend the lock time of their existing LiquidityPool. Users can

only extend their own pools.

execute_unstake: Allows users to withdraw their locked tokens after the lock period has expired. This

function can currently be called by any user, which is a security concern that needs to be addressed.

2.2 Admin Role

The admin role is responsible for managing the configuration settings of the LP Locker contract. The admin can

update various parameters of the contract.

2.2.1 Functions

execute_update_config: Allows the admin to update the contract's configuration. This includes: Setting the

native token (currently unused), updating the fee address, changing the fees percentage, enabling or

disabling the contract.

Application Flow Analysis 9 /16

2.3 Query Functions

The contract also provides several query functions that allow users and external systems to retrieve

information:

query_config: Returns the current configuration of the contract, including the owner address, whether the

contract is enabled, and the fees percentage.

query_liquidities: Retrieves a list of all LiquidityPools, or optionally filtered by a specific owner address.

query_liquidity: Retrieves details of a specific LiquidityPool by its ID.

10 /16

Findings

Findings 11 /16

4 Findings

4.1 Lack of Access Control in execute_unstake

The function can be called by any user, potentially allowing unauthorized unstaking, if the

time condition met.

execute_unstake

4.1.1 Code location

src/contract.rs

4.1.2 Recommendation
Implement access control for the function. Only allow the stake owner or authorized

addresses to call this function.

execute_unstake

Findings 12 /16

4.2 Unchecked Mathematical Operations

The contract uses unchecked mathematical operations on multiple locations, which could lead to panics due to
overflow or underflow.

4.2.1 Recommendation
Use checked mathematical operations to handle potential overflow/underflow gracefully.

An example code location:

let = * /
let = -

 fee_amount (amount Uint128:: (fee)) Uint128:: (100u64);

 new_amount amount fee_amount;

from from

Can be handled like this:

let =

| | ?

| | ?
=

| | ?

 fee_amount amount

 . (Uint128:: (fee))

 . (_ ContractError::ArithmeticErr {})
 . (Uint128:: (100u64))

 . (_ ContractError::ArithmeticErr {}) ;

let new_amount amount

 . (fee_amount)

 . (_ ContractError::ArithmeticErr {}) ;

checked_mul from
map_err
checked_div from
map_err

checked_sub
map_err

Findings 13 /16

4.3 Unused Parameternative_token

The parameter is included in the instruction data but is not being saved, edited, or utilized in any
meaningful way. It's also not forwarded to the response.

native_token

4.3.1 Code location

src/util.rs (Lines 28-55)

pub fn (

 storage: mut dyn Storage,

 address: Addr,

 native_token: String,

 fee_address: Addr,

 fees_percentage: u64,

 is_enabled: bool

) Result Response, ContractError {

 . (, native_token. ())

}

execute_update_config

add_attribute clone

&

-> < >
... 
...

...

...

"native_token"

src/state.rs (Lines 6-12)

pub struct Config {

 pub : Addr,

 pub : Addr,

 pub : u64,

 pub : Addr,

 pub : bool,

}

owner
creator
fees_percentage
fee_address
enabled

src/msg.rs (Line 8-11)

pub struct InstantiateMsg {

 pub : Addr,

 pub : Addr,

}

owner

fee_address

4.3.2 Recommendation
Either utilize the `native_token` parameter in the contract logic or remove it if it's not needed. If it's intended to
be used, add a corresponding field to the `Config` struct and update relevant functions to use this value.

4.3.3 Customer Response
Native token option has been removed, contract logic works with CW20 tokens now.

Findings 14 /16

4.4 Inconsistent Token Handling in get_token_account

The current implementation of and functions uses
inconsistent parameter naming and handling for different token types (native and CW20), leading to potential
confusion and errors.

 For native tokens, "denom" (denomination) is used to refer to the token type (e.g.,
"uinjective", "ujuno"). For CW20 tokens, the contract address is required.

 The denom parameter is used for both native token denomination and CW20 contract
address. contract_addr is used as the address to check the balance, which is confusing for CW20 tokens.

get_token_account transfer_token_message

Inconsistent terminology:

Parameter misuse:

4.4.1 Code location

src/util.rs

4.4.2 Recommendation
Safe Handling of Missing Data: Instead of unwrapping directly, we now use to safely handle the
possibility that might not return a value. This prevents the function from
panicking and instead allows it to return a specific error if the price data for a given collateral type is not found.

match
collateral_prices.get(&denom)

Refactor the and functions for clarity and consistency.get_token_amount transfer_token_message
Validate addresses before use

let = & ? example_addr deps.api. (example_addr) ;addr_validate

4.4.3 Customer Response
Native token option has been removed (see entry 4.3), contract logic works with CW20 tokens now.

Findings 15 /16

4.5 Use of Inline Static Values

The fee percentage () is currently set as a static value and also not changable, which may
limit the contract's flexibility.

fees_percentage

4.5.1 Code location

src/msg.rs (Lines 9-13)

pub struct InstantiateMsg {

 pub : Addr,

 pub : Addr,

}

owner
fee_address

src/contract.rs (Lines 33-39)

let = config Config {

 fees_percentage: 1u64,

};

// ...

// ...

src/contract.rs (Lines 33-39)

pub fn (deps: Deps) StdResult ConfigResponse {

 ({

	
	 : 1 ,

 })

}

query_config

Ok

-> < >
// ...

// ...

ConfigResponse

fees_percentage u64

4.5.2 Recommendation
Implement dynamic fee percentage setting and retrieval, or disable this functionality.

Update to return the actual from the .query_config fees_percentage Config

Consider passing the value when initializing the .Config

Consider adding a field to .fees_percentage InstantiateMsg

Consider implementing a function to update if needed.fees_percentage

4.5.3 Customer Response
Fee percentage is now being set at contract initialization, and cannot be changed after this moment. This
method was proposed and executed by the Kira team due to the demand to minimize the impact of admin being
hacked. Only the field will be mutable in the contract, this setup won’t affect LP users in a
compromised admin scenario.

fee_address

Findings 16 /16

4.6 Inefficient ID Format and Storage

The current ID format is unnecessarily long and redundant, consuming excessive storage.

4.6.1 Code location

src/contract.rs (Lines 96-120)

let = !

let =

+

& ?

 id (

 ,

 owner. (),

 denom. (),

 env.block.time. ()

);

 lp LiquidityPool {

 id: id. (),

 owner: owner. (),

 denom: denom. (). (),

 locktime: env.block.time. () locktime,

 amount: new_amount,

};

. (deps.storage, id. (), lp) ;

format

clone
clone

seconds

clone
clone
to_string clone

seconds

save clone

"{}-{}-{:x}"

// ... (code omitted for brevity)

LP_MAP

4.6.2 Recommendation
Shorten the ID format, possibly using a counter or hash function.
Remove redundant information from the struct, as and are already part of the
ID.

LiquidityPool owner denom

Consider using a more efficient storage structure to reduce redundancy.

Thank you for choosing us!

ironnode.io

